国网计量中心有限公司

检 验 报 告

检字第 SGCM010220200235 号

样品名称 A 级单相费控智能电能表
（远程一开关内置）
样品型号 DDZY149－M

制造单位 宁波迦南智能电气股份有限公司

委托单位 宁波迦南智能电气股份有限公司

检验类别 委托全性能试验

发布日期 2020 年12月14日

注 意 事 项

1，检验报告无检验测试机构章无效。
2，检验报告无检验人员，校核人，签发人的签字无效。
3，检验报告涂改无效。
4，对本检验报告若有异议，应于报告收到之日起十五日内向本检验测试机构提出，逾期不予受理。

5，检验结果只对被试样表负责。
6，检验报告部分复制无效。
7，样品来源信息为客户提供，实验室不负责其真实性。

国 网 计 量 中 心有限公司检 验 报 告

产品名称	A 级单相费控智能电能表 （远程－开关内置）	型号	DDZY149－M
委托单位	宁波迦南智能电气股份有限公司	检验类别	委托全性能试验
制造单位 及代码	宁波迦南智能电气股份有限公司 （0114）	样品等级	有功 A 级
委托单位 地址	浙江省慈溪市科技路711号	收样日期	2020．09．28
取样方式	自取	样品数量	10 只
额定电压	220 V	电流量程	$0.25-0.5(60) \mathrm{A}$
额定频率	50 Hz	仪表常数	$2000 \mathrm{imp} / \mathrm{kWh}$
环境温度	$23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$	相对湿度	$45 \% \sim 75 \%$
检验日期	2020－09－28～2020－12－03	检验项目	七十七项
样品编号	$\begin{array}{llll}\text { R－2344－01，R－2344－02，R－2344－03，R－2344－04，R－2344－05，} \\ \text { R－2344－06，} & \text { R－2344－07，} & \text { R－2344－08，} & \text { R－2344－09，}\end{array}$		
检验依据	单相智能电能表（2020 版）通用技术规范 Q／GDW 11778－2017 面向对象的用电信息数据交换协议		
检验结论	受检样品所有检验项目的技术指标符合检验依据的要求。 签发人： 姜哄浪		
备注			

国网计量中心有限公司检验报告

测试用计量器具／重要仪器：

序号	设备名称	档案编号	证书编号	有效期	状态
1	防尘试验箱	SGCM－DC－YQ－126	GFJGJLI001181208362	2020－12－26	正常
2	低功率因数瓦特表	SGCM－DC－YQ－013	SGCM011120200004	2021－01－08	正常
3	数显式推拉计	SGCM－DC－YQ－173	LSff2020－00389	2021－01－31	正常
4	电动振动试验台	SGCM－DC－YQ－340	JA20S－CC000009	2021－02－19	正常
5	垂直冲击试验台	SGCM－DC－YQ－341	JA20S－CC000010	2021－02－19	正常
6	弹簧冲击锤	SGCM－DC－YQ－390	LScj2020－01936	2021－05－14	正常
7	工频磁场抗扰度试验装置	SGCM－DC－YQ－438－1	DCcx2020－00582	2021－05－20	正常
8	步入式高低温湿热试验箱	SGCM－DC－YQ－366	RGjc2020－03475	2021－06－13	正常
9	直接双向交互通信检测平台	SGCM－DC－YQ－617	SGCM011020190066	2021－07－09	正常
10	单相电能表检定装置	SGCM－DC－YQ－380	SGCM011020200014	2022－04－29	正常
11	电能表谐波试验装置	SGCM－DC－YQ－447	SGCM011220200057	2022－07－21	正常
12	GTEM 横电磁波传输室	SGCM－DC－YQ－284	XDdj2019－0610	2024－02－13	正常

试 验 结 果 汇 总

序号	检验项目	页码	试验结果
1	初始固有误差	5	符合
2	起动试验	6	符合
3	潜动试验	6	符合
4	电能表常数试验	6	符合
5	电子指示显示器电能示值组合误差	7	符合
6	由电源供电的时钟试验	7	符合
7	采用备用电源工作的时钟试验	7	符合
8	环境温度对时钟准确度的影响	8	符合
9	误差一致性试验	8	符合
10	变差要求试验	8	符合
11	负载电流升降变差试验	9	符合
12	重复性试验	9	符合
13	交流电压暂降和短时中断试验	10	符合
14	静电放电试验	10	符合
15	射频电磁场（电流电路中无电流）试验	10	符合
16	射频电磁场（电流电路中有电流）试验	11	符合
17	快速瞬变脉冲群试验	12	符合
18	射频场感应的传导干扰试验	12	符合
19	传导差模电流干扰试验	13	符合
20	浪涌试验	13	符合
21	振铃波试验	14	符合
22	外部恒定磁场试验	14	符合
23	外部工频磁场试验	15	符合
24	外部工频磁场（无负载条件）试验	15	符合
25	外部工频磁场干扰试验	15	符合
26	测量及监测误差试验	16	符合
27	测量及监测零线电流误差试验	16	符合
28	电流和电压电路中谐波－第5次谐波试验	17	符合
29	电流和电压电路中谐波－方顶波波形试验	17	符合
30	电流和电压电路中谐波－尖顶波波形试验	17	符合
31	电流电路中的间谐波－脉冲串触发波形试验	18	符合
32	电流电路中的奇次谐波－90 度相位触发波形试验	18	符合
33	直流和偶次谐波－半波整流波形试验	18	符合
34	电压改变试验	19	符合
35	环境温度改变试验	20	符合
36	频率改变试验	21	符合
37	辅助装置工作试验	21	符合
38	短时过电流试验	22	符合
39	负载电流快速改变试验	22	符合
40	自热试验	22	符合
41	高次谐波试验	23	符合

试验结果汇总（续）

序号	检验项目	页码	试验结果
42	高温试验	23	符合
43	低温试验	23	符合
44	交变湿热试验	24	符合
45	极限工作环境试验	24	符合
46	防尘试验	24	符合
47	防水试验	25	符合
48	冲击试验	25	符合
49	振动试验	25	符合
50	弹簧锤试验	26	符合
51	电能表温度限值及耐热试验	26	符合
52	防火焰蔓延	26	符合
53	接线端子压力试验	27	符合
54	通信状态的功耗试验	27	符合
55	非通信状态的功耗试验	27	符合
56	电流回路阻抗试验	28	符合
57	耐受长期过电压试验	28	符合
58	通信模块接口带载能力试验	28	符合
59	通信模块互换能力试验	29	符合
60	储能器件放电试验	29	符合
61	脉冲电压试验	29	符合
62	交流电压试验	30	符合
63	安全认证试验	30	符合
64	密钥更新试验	30	符合
65	远程控制试验	31	符合
66	参数更新试验	31	符合
67	电能量分项累计存储试验	32	符合
68	费率和时段试验	32	符合
69	事件记录试验	33	符合
70	冻结功能试验	33	符合
71	负荷记录试验	34	符合
72	软件比对功能试验	34	符合
73	通信规约一致性	35	符合
74	通信功能试验	35	符合
75	时钟功能试验	36	符合
76	外观及标志检查	36	符合
77	功能检查	37	符合

1．初始固有误差

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4．5．1条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5． 2.1 条
3．试验结果：

样品编号	R－2344－01		
功卒因数	允许误差 \％	电流	实际误差 \％
1.0	± 0.9	$I_{\text {min }}$	0.0
	± 0.6	I_{11}	0.0
		1014 ，	0.0
		$0.5 I_{\text {an＊}}$	0.0
		$I_{\text {ama }}$	0.0
0．5L	± 0.9	$I_{\text {ain }}$	0.0
	± 0.6	$I_{\text {tr }}$	0.0
		$10 I_{\text {u }}$	0.0
		$0.5 I_{\text {max }}$	0.0
		$I_{\text {was }}$	－0．1
0．80	± 0.9	$I_{\text {win }}$	0.0
	± 0.6	I_{11}	0.0
		$10 I_{i f}$	0.0
		$0.5 I_{\text {am }}$	0.0
		$I_{\text {bix }}$	0.0

4．试验结论：符合

2．起动试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二． 4.5 .2 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5． 2.2 条
3．试验结果：

样品编号	R－2344－01		
功率因数	电流	试验要求	试验结果
1.0	$0.04 I_{i r}$	能起动并连续记录	符合要求

电流	允许误差 \％	实际误差 \％
$0.04 I_{4}$	± 18.75	-0.20

4．试验结论：符合

3．潜动试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4．5．3 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二． 5.2 .3 条
3．试验结果：

样品编号	$\mathrm{R}-2344-01$	
电压	试验要求	试验结果
$1.1 U_{\text {unn }}$	在规定时间内不应产生多于一个脉冲	符合要求

4．试验结论：符合

4．电能表常数试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4．5．4 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5． 2.4 条
3．试验结果：

样品编号	R－2344－01	
试验要求		
测试输出与显示器指示之间的关系，应与铭牌标志一致	试验结果	

4．试验结论：符合

5．电子指示显示器电能示值组合误差

1．技术条件：单相智能电能表（2020 版）通用技术规范 二． 4.5 .5 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二． 5.2 .5 条
3．试验结果：

样品编号	R－2344－09
项目	试验结果
尖电量 (kWh)	3.3030
峰电量 (kWh)	2.6895
平电量 (kWh)	0.6975
谷电量 (kWh)	3.3015
各分时电量之利 (kWh)	9.9915
总电量 (kWh)	9.9915
｜允许误差｜	0.0030
｜实际误差 \mid	0.0000

4．试验结论：符合

6．由电源供电的时钟试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4，5．6．a）条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5．2．6．1 条
3．试验结果：

样品编号	$\mathrm{R}-2344-04$
允许误差	实际误差
$\pm 0.5 \mathrm{~s} / 24 \mathrm{~h}$	0.00

4．试验结论：符合

7．采用备用电源工作的时钟试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4．5．6．b）条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二，5．2，6． 2 条
3．试验结果：

样品编号	$\mathrm{R}-2344-01$
允许偏差	实际偏差
$\pm 2 \mathrm{~s} / 72 \mathrm{~h}$	+1

4，试验结论：符合

8．环境温度对时钟准确度的影响

1．技术条件：单相智能电能表（2020 版）通用技术规范 二，4．5．6．c）条
2．试验方法：单相智能电能表（2020 版）通用技术规范－．5．2．6．3条
3．试验结果：

样品编号	$\mathrm{R}-2344-04$	
试验要求	允许误差	试验结果
$-25^{\circ} \mathrm{C}$	$\pm 1 \mathrm{~s} / 24 \mathrm{~h}$	+0.09
		+0.09

试验要求	允许偏差	试验结果
$-25^{\circ} \mathrm{C} \sim+23^{\circ} \mathrm{C}$	$+15 /{ }^{\circ} \mathrm{C} / 24 \mathrm{~h}$	0.00
$+23^{\circ} \mathrm{C} \sim+55^{\circ} \mathrm{C}$		0.00

4．试验结论：符合

9．误差一致性试验

1．技术条件：单相智能电能表（2020 版）通用技术规范二． 4.5 .7 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5． 2.7 条
3．试验结果：

样品编号	$\mathrm{R}-2344-02$		
功率因数	允许偏差 \％	电流	实际误差偏差 \％
1.0	± 0.3	$10 I_{0}$	0.00
0.5 L			$+(0.02$
1.0	± 0.4	0.00	

4．试验结论：符合

10．变差要求试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二． 4.5 .8 条
2．试验方法：单相智能电能表（2020 版）通用技术规范
5． 2.8 条
3．试验结果：

样品编号	$\mathrm{R}-2344-01$		
功率因数	｜允许变差 $\mid \%$	电流	｜实际变差｜\％
1.0	0.2	$10 I_{15}$	0.01
0.5 L			0.02

4．试验结论：符合

11．负载电流升降变差试验

1．技术条件：单相智能电能表（2020 版）通用技术规范二．4．5．9 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5．2． 9 条
3．试验结果：

样品编号	R－2344－01			
功率因数	｜允许变差｜\％	电流	｜实际变差 ${ }^{\text {a }}$ \％	\％
1.0	0.25	$I_{\text {sam }}$	0.01	
		$10 I_{11}$	0.00	
		$I_{\text {mu }}$	0.00	

4．试验结论：符合

12．重复性试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4．5． 10 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5． 2.10 条
3．试验结果：

样品编号	R－2344－01		
功率因数	电流	允许误差 \％	实际重复性误差 $\|\%\|$
1.0	$0.5 I_{1,}$	0． 15	0.02
	$I_{1,}$	0.1	0． 02
	$10 I_{10}$		0.01
	$I_{\text {aum }}$		0.00
0．5L	$I_{1 \prime}$		0.02
	$10 I_{i 1}$		0.01
	$I_{\text {aw }}$		0.01
0． 8 C	I_{1+}		0.01
	$10 I_{11}$		0.01
	$I_{\text {aed }}$		0.00

4．试验结论：符合

13．交流电压暂降和短时中断试验

1．技术条件：单相智能电能表（2020 版）通用技术规范二．4．5．11条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5．3．3．2条
3．试验结果：

4．试验结论：符合

14．静电放电试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4．5． 11 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二，5．3．3． 3 条
3．试验结果：

样品编号	R－2344－07		
试验环境	温度： $23.0{ }^{\circ} \mathrm{C}$	湿度：	54.4 \％RH
试验条件	试验要求		试验结果
$\begin{gathered} \text { 直接放电 } \\ \text { 空气放电 } \pm 15 \mathrm{kV} \\ \hline \end{gathered}$	工作正常，信息无变化：寄存器值的改变不大于 0.0132 kWh ；符合基本最大允许误差极限的要求。		符合要求
间接放电耦合板接触放电 $\pm 8 \mathrm{kV}$			

4．试验结论：符合

15．射频电磁场（电流电路中无电流）试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4．5． 11 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二，5．3．3．4条
3．试验结果：

样品编号	$\mathrm{R}-2344-06$		
试验环境	温度：	$23.3{ }^{\circ} \mathrm{C}$	
试验条件	试验要梂	52.8 \％RH	
场强 $30 \mathrm{~V} / \mathrm{m}$ 频带 $80 \mathrm{MHz} \sim 6 \mathrm{GHz}$	工作正常，信息无变化： 寄存器值的改变不大于 $0.0132 \mathrm{kWh} ;$ 符合基本最大允许误差极限的要求。		试验结果

4．试验结论：符合

16．射频电磁场（电流电路中有电流）试验

1．技术条件：单相智能电能表（2020 版）通用技术规范－． 4.5 .11 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5．3．3．5条
3．试验结果：

样品掮号	R－2344－07				
试验环境	温度：		$23.4{ }^{\circ} \mathrm{C}$	湿度：	56.9 \％RH
试验要求	功率因数	电流	允许误差偏移 \％	频率	实际误差偏移 \％
				80 MHz	＋0．01
				120 MHz	＋0．01
				200 MHz	0.00
				300 MHz	0.00
				400 MHz	＋0．08
				500 MHz	－0．02
				600 MHz	0.00
				700 MHz	＋0． 01
				800 MHz	－0．01
				900 MHz	＋0．03
				1000 MHz	＋0．01
				1100 MHz	＋0．01
				1200 MHz	＋（0．01
				1300 MHz	$+0.01$
电磁场强度 $10 \mathrm{~V} / \mathrm{m}$	1.0	$10 I_{i r}$	± 2.0	1400 MHz	＋0．01
				1500 MHz	＋0．01
				1600 MHz	＋0．01
				1700 MHz	$+0.01$
				1800 MHz	＋0．01
				1900 MHz	＋0．01
				2000 MHz	＋0．01
				2500 MHz	＋0．02
				3000 MHz	＋0，02
				3500 MHz	＋0．02
				4000 MHz	＋0．01
				4500 MHz	＋0．02
				5000 MHz	＋0．02
				5500 MHz	＋0． 02
				6000 MHz	＋0．02

4．试验结论：符合

17．快速瞬变脉冲群试验

1．技术条件：单相智能电能表（2020 版）通用技术规范－． 4.5 .11 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．万．3．3． 6 条
3．试验结果：

样品编号	R－2344－06				
试验环境	温度：	$23.1{ }^{\circ} \mathrm{C}$	湿度：	$52.9 \% \mathrm{RH}$	
功率因数	电流	允许误差偏移 \％	试验电路	试验电压	实际误差偏移 \％
			耑口	$+4 \mathrm{kV}$	0.00
1.0	$10 I$	\pm ． 0	网电源峏口	$-4 \mathrm{kV}$	0.00
1.0	101.	± 4.0	号端	$+2 \mathrm{kV}$	0.00
				$-2 \mathrm{kV}$	0.00

4．试验结论；符合

18．射频场感应的传导干扰试验

1．技术条件：单相智能电能表（2020版）通用技术规范 二．4．5．11 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5．3．3．7条
3．试验结果：

样品编号	R－2344－07				
试验环境	温度：	$23.0{ }^{\circ} \mathrm{C}$		湿度：	53.9% RH
试验条件	功率因数	电流	允许误差偏移\％	频率	实际误差偏移 \％
				150 kHz	0． 00
				500 kHz	0.00
				1 MHz	0.00
				10 MHz	0.00
				20 MHz	0.00
仪表工作	1.0	$10 I_{11}$	± 2.0	30 MHz	0.00
				40 MHz	$+0.01$
				50 MHz	$+0.01$
				60 MHz	$+0.01$
				70 MHz	0.00
				80MHz	0.00

4．试验结论：符合

19．传导差模电流干扰试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4．5．11条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5．3．3． 8 条
3．试验结果：

样品椖号	R－2344－07			
试验环境	温度：	$23.2{ }^{\circ} \mathrm{C}$	湿度：	53.1 \％RH
功率因数	电流	允许误差偏移 \％	波形	实际误差偏移 \％
			3 Hz 调制	＋0．11
			101 Hz 调制	－0．08
1． 0	1014	± 4.0	301 Hz 调制	－0．09
			601 Hz 调制	－0． 14
			连续波	－0．02

4．试验结论：符合

20．浪涌试验

1．技术条件：单相智能电能表（2020版）通用技术规范二．4．5．11条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5．3．3．9 条
3．试验结果：

样品编号	R－2344－07		
试验环境	温度；	23．$)^{\circ} \mathrm{C}$ 源 湿度：	53.3 \％RH
试验线路	试验条件	试验要求	试验结果
电网电源端口	差模士 1 kV 阻抗 2Ω 正负极性各 5 次	工作正常，信息无变化： 寄存器值的改变不大于 0.0132 kWh ，符合基本最大允许误差极限的要求。	符合要求

4．试验结论：符合

21．振铃波试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4．5． 11 条
2．试验方法：单相智能电能表（2020）版）通用技术规范 二． 5.3 .3 .10 条
3．试验结果：

样品编号	R－2344－07		
试验环境	温度：	$23.4{ }^{\circ} \mathrm{C}$ 湿度：	55.1 \％RH
试验线路	试验条件	试验要求	试验结果
电网电源端口	共模 $\pm 4 \mathrm{kV}$ 阻抗 12Ω 正负极性各 5 次	工作正常，信息无变化： 寄存器值的改变不大于 0.0132 kWh ；符合基本最大允许误差极限的要求。	符合要求
网	$\begin{gathered} \text { 差模 } \pm 2 \mathrm{kV} \\ \text { 阻抗 } 12 \Omega \\ \text { 正负极性各 } 5 \text { 次 } \end{gathered}$		
ELV信号端口	共模士 1 kV 阻抗 30Ω 正负极性各 5 次		

4．试验结论：符合

22．外部恒定磁场试验

1．技术条件：单相智能电能表（2020 版）通用技术规范二，4．5．11条
2．试验方法：单相智能电能表（2020 版）通用技术规范－．5．3．3．11 条
3．试验结果：

样品编号	R－2344－08	
试验条件	试验要求	试验结果
200 mT 恒定磁场	磁场施加在四个面，各持续 20min，电能表不死机，不黑屏	符合要求
	试验过程中，负荷开关不能误动作	符合要求

试验条件	电流	功率因数	允许误差偏移 \％	实际误差偏移 \％
200 mT 恒定磁场	$10 I_{1,}$	1.0	± 1.5	-0.01

4．试验结论：符合

23．外部工频磁场试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4．5．11条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5．3．3．12条
3．试验结果：

样品编号	R－2344－08			
试验环境	温度：	$23.4{ }^{\circ} \mathrm{C}$	湿度：	53.0 \％RH
磁场强度	功率因数	电流	允许误差偏移 \％	实际误差偏移 \％
0.5 mT	1.0	1010	± 1.3	＋0． 01
		$I_{\text {wut }}$		＋0．01

4．试验结论：符合

24．外部工频磁场（无负载条件）试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4．5．11 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5．3．3．13条
3．试验结果：

样品編号	R－2344－08			
试验环境	温度：	$23.1{ }^{\circ} \mathrm{C}$	湿度：	54.9 \％RH
电压	试验要求			试验结果
1． $15 U_{\text {wi．m }}$	在 $0,5 \mathrm{mT}$ 工频磁场干扰中，规定时间内不应产生多于一个脉冲			符合要求

4．试验结论；符合

25．外部工频磁场干犹试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4．5．11 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二，5．3．3．14 条
3．试验结果：

样品编号	R－2344－08			
试验环境	温度	$23.3{ }^{\circ} \mathrm{C}$	湿度；	53.7 \％RH
试验条件	试验要求			试验结果
施加在三个垂直平面	工作正常，信息无变化			符合要求
磁感应强度 $1000 \mathrm{~A} / \mathrm{m}$	寄存器值的改变不大于 0.0132 kWh			符合要求
持续时间 3 s	符合基本最大允许误差极限的要求			符合要求

4．试验结论：符合

26．测量及监测误差试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 四，4．11 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 四．4． 11 条
3．试验结果：

样品编号	R－2344－01		
测量类型	测量负载	允许误差 \％	实际引用误差 \％
电压	1． $2 U_{\text {mmem }}$	± 1.0	＋（）． 01
	$U_{\text {num }}$		＋（）． 01
	0． $6 U_{\text {w }}$		－0．02
电流	1． $2 I_{\text {win }}$		－0． 05
	$10 I_{\text {ut }}$		0.00
	$I_{\text {wen }}$		0． 00
功率	1． $2 U_{\text {wam }} 1.2 I_{\text {man }}, 1.0$		－0． 06
	$U_{\text {ume，}} 10 I_{1,}, 1.0$		0.00
	$U_{\text {neam }}, 0.04 I_{1,1}, 1.0$		0． 00
功率因数	0．5L．		＋0． 04

4．试验结论：符合

27．测量及监测零线电流误差试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 四．4． 11 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 四．4． 11 条
3．试验结果：

样品编号	$\mathrm{R}-2344-04$		
测量类型	测量负载	允许误差 \％	实际引用误差 \％
零线电流	$1.2 I_{\text {an }}$	± 1.0	-0.05
	$10 I_{11}$		+0.01
	$I_{\text {an }}$		+0.01

4．试验结论：符合

28．电流和电压电路中谐波－第5次谐波试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二． 4.5 .11 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5．3．4．1．2条
3．试验结果：

样品编号	R－2344－03					
功率因数	电流		验要求		允许误差偏移 \％	实际误差偏移 \％
1.0	0.51 mas	$P_{\mathrm{s}}=0.04 P_{1}$	谐波与基波相位	0°	± 0.8	－0．02
				180°		－0．02

4．试验结论：符合

29．电流和电压电路中谐波－方顶波波形试验

1．技术条件：单相智能电能表（2020版）通用技术规范二，4．5．11条
2．试验方法：单相智能电能表（2020 版）通用技木规范 二，5．3．4．1．3 条
3．试验结果：

样品编号	R－2344－03			
试验条件	功率因数	电流	允许误差偏移 \％	实际误差偏移 \％
方顶波	1.0	$10 J_{1,}$	± 0.6	+0.01

4．试验结论：符合

30．电流和电压电路中谐波－尖顶波波形试验

1．技术条件：单相智能电能表（2020 版）通用技术规范二．4．5．I1 条
2．试验方法：单相智能电能表（2020 版）通用技术规范二．5．3．4．1．4条
3．试验结果：

样品编号	R－2344－03			
试验条件	功率因数	电流	允许误差偏移 \％	实际误差偏移 \％
尖顶波	1.0	$10 I_{\text {ir }}$	± 0.6	+0.02

4．试验结论；符合

31．电流电路中的间谐波－脉冲串触发波形试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4．5．11条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二，5．3．4．1．5条
3．试验结果：

样品编号	R－2344－03			
试验条件	功率因数	电流	允许误差偏移 \％	实际误差偏移 \％
间谐波	1.0	101,	± 1.5	0.00

4．试验结论：符合

32．电流电路中的奇次谐波－90度相位触发波形试验

1．技术条件：单相智能电能表（2020 版）通用技术规范＝．4．5．11条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二，5．3．4，1．6条
3．试验结果：

样品编号	R－2344－03			
试验条件	功率因数	电流	允许误差偏移 \％	实际误差偏移 \％
奇次谐波	1.0	$10 I_{15}$	± 0.8	+0.01

4．试验结论：符合

33．直流和偶次谐波－半波整流波形试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 \qquad
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5．3．4．1．7条
3．试验结果：

样品编号	R－2344－03			
试验条件	电流	功率因数	允许误差偏移 \％	实际误差偏移 \％
直流和偶次谐波	Max $\sqrt{2}$	1.0	± 3.0	＋2．46
		0． 5 L		＋2．24

4．试验结论：符合

34．电压改变试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二，4．5．11 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二，5．3．4． 2 条
3．试验结果：

样品编号	R－2344－01			
功率因数	允许误差偏移 \％	电压	电流	实际误差偏移 \％
1.0	± 1.0	1． $15 U_{\text {Une }}$	$I_{\text {tr }}$	－0．01
			$10 I_{10}$	－0．02
			$I_{\text {wan }}$	－0．01
1.0	± 0.5	1．10 mem	$I_{\text {m }}$	＋0． 03
			$10 I_{1 r}$	－0． 01
			$I_{\text {max }}$	0.00
0．5L	± 1.0		$I_{\text {w }}$	－0． 03
			$10 I_{\text {ur }}$	－0． 01
			$I_{\text {wow }}$	0.00
1.0	± 0.5	$0.9 U_{\text {nm }}$	$1{ }_{\text {sin }}$	－0．04
			$10 I_{10}$	0.00
			$I_{\text {nax }}$	0.00
0．5L	± 1.0		$I_{t r}$	－0．03
			$10 I_{14}$	－0．01
			$I_{\text {axr }}$	－0．01
1.0	± 1.0	$0.85 U_{\text {men }}$	$I_{\text {Ir }}$	－0．04
			$10 I_{1,}$	－0．01
			$I_{\text {axe }}$	－0．02
1.0	± 1.0	0． $8 U_{\text {nme }}$	I_{11}	－0．03
			$10 I_{11}$	0.00
			$I_{\text {nn }}$	－0． 02

功率因数	允许误差 \％	电流	电压	实际误差 \％
1.0	$+10 \sim-100$	1011_{4}	0． $7 U_{\text {l．．．m }}$	＋0．02
			$0.6 U_{\text {wire }}$	＋0． 02
			$0.5 U_{\text {nmm }}$	＋0． 03
			0． $4 U_{\text {wnm }}$	－100．00
			$0.3 u_{\text {boem }}$	－100．00
			$0.2 U_{\text {nee }}$	－100． 00
			$0.1 U_{\text {nes }}$	－100．00
			0 V	－100．00

4．试验结论：符合

35．环境温度改变试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4．5．11条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5．3．4．3条
3．试验结果：

样品编号	R－2344－04			
试验要求	功率因数	允许温度系数 \％／K	电流	实际温度系数 \％／K
$-25^{\circ} \mathrm{C} \sim-10^{\circ} \mathrm{C}$	1.0	± 0.05	$I_{\text {en }}$	0.00
			$10 I_{11}$	0.00
			$I_{\text {sem }}$	0.00
	0.5 L	± 0.07	I_{11}	0.00
			$10 I_{\text {u }}$	0.00
			$I_{\text {won }}$	0.00
$-10^{\circ} \mathrm{C} \sim+5^{\circ} \mathrm{C}$	1.0	± 0.05	$I_{\text {win }}$	0.00
			$10 I_{11}$	0.00
			$I_{\text {anem }}$	0.00
	0． 5 L	± 0.07	$I_{\text {r }}$	0.00
			10111	0.00
			$I_{\text {anix }}$	0.00
$+5^{\circ} \mathrm{C} \sim+23^{\circ} \mathrm{C}$	1.0	± 0.05	$I_{\text {ain }}$	0.00
			101.	0.00
			$I_{\text {en }}$	0.00
	0． 5 L	± 0.07	$I_{\text {If }}$	0.00
			$10 I_{\text {＋}}$	0． 00
			$I_{\text {and }}$	0.00
$+23^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}$	1.0	± 0.05	$I_{\text {sin }}$	0.00
			$10 I_{4}$	0.00
			$I_{\text {mon }}$	0.00
	0．5L	± 0.07	I_{1}	0.00
			$10 I_{17}$	0.00
			$I_{\text {aex }}$	0.00
$+40^{\circ} \mathrm{C} \sim+55^{\circ} \mathrm{C}$	1.0	± 0.05	$I_{\text {siin }}$	0.00
			$101{ }_{11}$	0.00
			$I_{\text {ann }}$	0.00
	0.51.	± 0.07	I_{11}	0.00
			$10 I_{11}$	0.00
			$I_{\text {anx }}$	0． 00

4．试验结论：符合

36．频率改变试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4．5．11 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二，5．3．4．4 条
3．试验结果：

样品編号	R－2344－01			
频率	允许误差偏移 \％	功率因数	电流	实际误差偏移 \％
49Hz	± 0.5	1.0	$I_{\text {sin }}$	－0． 04
			$10 I_{\text {u }}$	0． 00
			$J_{\text {was }}$	－0． 01
	± 0.7	0．5L	I_{11}	－0． 01
			$10 I_{11}$	－0． 01
			$I_{\text {mas }}$	0.00
51 Hz	± 0.5	1.0	$I_{\text {min }}$	－0． 04
			101.1	0.00
			$I_{\text {ax }}$	0.00
	± 0.7	0．5L	I_{11}	－0． 02
			$10 I_{1}$ ，	0.00
			$I_{\text {air }}$	＋0． 01

4．试验结论：符合

37．辅助装置工作试验

1．技术条件：单相智能电能表（2020 版）通用技术规范二．4．5．11 条
2．试验方法：单相智能电能表（2020 版）通用技术规范二．5．3．4．5 条
3．试验结果：

样品编号	R－2344－01			
功率因数	试验条件	允许误差偏移 \％	电流	实际误差偏移 \％
1.0	辅助装置工作	± 0.3	$I_{\text {aü }}$	-0.01
			$I_{\text {li }}$	-0.02
			$I_{\text {an }}$	0.00

4．试验结论：符合

38．短时过电流试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4．5． 11 条
2．试验方法：单相智能电能表（2020版）通用技术规范二．5．3．4． 6 条
3．试验结果：

样品编号	R－2344－05		
试验条件	试验要求	试验结果	
工作状态下，施加标称频率半个周期的 $30 I_{\text {au }}$ 后， 电能表恢复到初始温度	工作正常，信息无变化	符合要求	

功率因数	电流	允许误差偏移 \％	实际误差偏移 \％
1.0	$10 I_{n}$	± 1.5	+0.02

4．试验结论：符合

39．负载电流快速改变试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4．5． 11 条
2．试验方法：单相智能电能表（2020 版）通用技术规范二．5．3．4．7条
3．试验结果：

样品编号	R－2344－08			
功率因数	电流	试验条件	允许误差 \％	实际误差 \％
1.0	$101{ }_{1}$	保持 10 s ，中断 10 s ，持续 4 h	± 2.0	＋0． 02
		保持 5 s ，中断 5 s ，持续 4 h		0.00
		保持 5s，中断 0．5s，持续 1h		0.00

4．试验结论：符合

40．自热试验

1．技术条件：单相智能电能表（ 2020 版）通用技术规范 二 ，4，5，11 条
2．试验方法：单相智能电能表（2020 版）通用技术规范二．5．3．4．8条
3．试验结果：

样品编号	$\mathrm{R}-2344-01$		
电流	允许误差偏移 \％	功率因数	实际误差偏移 \％
$I_{\text {mon }}$	± 0.5	1.0	$-(0.01$
		0.5 L	-0.04

4．试验结论：符合

41．高次谐波试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二，4．5．11 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5．3．4． 9 条
3．试验结果：

样品编号	R－2344－03				
项目	功率因数	电流	允许误差偏移 \％	濖波次数	实际误差偏移 \％
	1.0	L．	± 1.0	$15 \sim 40$	$+0.02$
电压电路				$40 \sim 15$	$+0.02$
电流电路				15～40	$+0.02$
				40～15	＋0．03

4．试验结论：符合

42．高温试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4．5．11 条
2．试验方法：单相智能电能表（2020 版）通用技术规范－．5． 5.4 条
3．试验结果：

样品编号	$\mathrm{R}-2344-02$				
试验件	电流	功率因数	允许误差偏移 \％	实际误差偏移 \％	
$+70^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$	$10 I_{i r}$	1.0	± 0.33	+0.03	
持续 72 h					

4．试验结论：符合

43．低温试验

1．技术条件：单相智能电能表（2020 版）通用技术规范
\qquad 4．5． 11 条

2．试验方法：单相智能电能表（2020版）通用技术规范 二，5．4． 3 条
3．试验结果：

样品编号	R－2344－02				
试验条件	电流	功率因数	允许误差偏移 \％	实际误差偏移 \％	
$-40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$					
持续 72 h					

4．试验结论：符合

44．交变湿热试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4．5．11条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5． 4.4 条
3．试验结果：

样品编号	R－2344－02		
试验条件	试验要求	试验结果	
工作状态，无电流 仪表在周期吽变化的环境中暴蕗 6 个周期 恢复时间 24 h	1应出现影响仪表功能特性的机械损 伤或腐蚀，绝缘脉冲电压试验符合要求	符合要求	

试验条件	电流	功率因数	允许误差偏移 \％	实际误差偏移 \％
交变湿热 6 个周期	$10 I_{n i}$	1.0	± 0.1	+0.06

4．试验结论：符合

45．极限工作环境试验

1．技术条件：单相智能电能表（2020 版）通用技术规范二．4．5．11条
2．试验方法；单相智能电能表（2020版）通用技术规范 二．5．4， 6 条
3．试验结果：

样品编号	$\mathrm{R}-2344-04$			
试验条件	电压	电流	试验要求	试验结果
坏境温度 $70^{\circ} \mathrm{C}$ 运行 4 h	$1.15 U_{\text {nee }}$	$I_{\text {mex }}$	不死机，不黑屏	符合要求
			工作正常，功能末受影响	符合要求
		符合基本最大允许误差极限的要求	符合要求	

4．试验结论：符合

46．防尘试验

1．技术条件：单相智能电能表（2020 版）通用技术规范－．4．5． 11 条
2，试验方法：单相智能电能表（2020 版）通用技术规范 二．5．4．7 条
3．试验结果：

样品编号	$\mathrm{R}-2344-05$	
试验条件	试验要求	试验结果
非工，作状态 试验等级 IP5X	不损坏仪表安全，不能沉积导致爬电距离缩短的灰尘	符合要求
	工作正常，功能末受影响	符合要求
	符合基本最大允许误差极限的要求	符合要求

4．试验结论：符合

47．防水试验

1．技术条件：单相智能电能表（2020版）通用技术规范 二．4，5． 11 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5． 4.8 条
3．试验结果：

样品编号	R－2344－05	
试验条件	试验要求	试验结果
工作状态，无电流	恢复 24 h, 工作正常	符合要求
	试验等级 IPX4	不应出现影响仪表功能特性的机械损伤或腐蚀
	符合基本最大允许误差极限的要求	符合要求

4．试验结论：符合

48．冲击试验

1，技代条件：单相智能电能表（2020 版）通用技术规范
二．4．5．11 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 －．5．5．1 条
3．试验结果：

样品编号	R－2344－01		
功率因数	电流	允许误差偏移 \％	实际误差偏移 \％
1.0	$10 I_{i n}$	$\pm 0,33$	0.00

4．试验结论：符合

49．振动试验

1，技术条件：单相智能电能表（2020版）通用技术规范 二．4．5．11 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5．5． 2 条
3．试验结果：

样品编号	R－2344－01		
功率因数	电流	允许误差偏移 \％	实际误差偏移 \％
1.0	$10 I_{i .}$	± 0.33	-0.02

4．试验结论：符合

50．弹簧锤试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4．3．10 条
2．试验方法：单相智能电能表（2020版）通用技术规范 二．5．5． 3 条
3．试验结果：

样品编号	$\mathrm{R}-2344-05$		
试验条件	试验要求	试验部位	试验结果
0，2J 动能	不影响仪表工作，无触及带电部件的损伤	表壳	符合要求
	窗口	符合要求	
		端子盖	符合要求

4．试验结论：符合

51．电能表温度限值及耐热试验

1．技林条件：单相智能电能表（2020 版）通用技术规范 二．4．3．11条
2．试验方法：单相智能电能表（2020版）通用技术规范 二．．5．5． 4 条
3．试验结果：

样品编号	R－2344－09				
电压	电流	功率因数	试验部位	修正后温度限值 「C	修正后最高温度 「
$1.15 U_{\text {max }}$	$I_{\text {wes }}$	1.0	外壳	100	60.8
			端子	120	76.5

4．试验结论：符合

52．防火焰蔓延

1．技术条件：单相智能他能表（2020 版）通用技术规范－．4．3．2 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5．5． 5 条
3．试验结果：

样品编号	R－2344－01		
试验部位	试验温度	试验要求	试验结果
表壳及端子盖	$650^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$	试验过程中，仪表不应燃烧：如发生燃烧，则应在移开灼热丝之后的 30 s 内熄灭；铺底层的绢纸不应起燃。	符合要求
端子座	$960^{\circ} \mathrm{C} \pm 15^{\circ} \mathrm{C}$		符合要求

4．试验结论：符合

53．接线端子压力试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 三．8．5．f）$\sim \mathrm{g}$ ）条
2．试验方法：单相智能电能表（2020版）通用技术规范 三．8．5．f）$\sim \mathrm{g}$ ）条
3．试验结果：

样品编号	$\mathrm{R}-2344-05$		
试验部位	试验条件	试验要求	试俭结果
电压，电流接线端子	60 N	接线端子位移不应超过 0.5 mm	符合要求
	辅助接线端子		符合要求

4．试验结论：符合

54．通信状态的功耗试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4． 6.1 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5．6．1 条
3．试验结果：

样品编号	R－2344－05	
试验线路	允许值	试验结果
电压线路	3 W	0.7

4．试验结论：符合

55．非通信状态的功耗试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4．6．1条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二． 5.6 .1 条 3．试验结果：

样品编号	$\mathrm{R}-2344-05$		
试验要求	试验线路	允许值	试验结果
不带通信模块 背光关闭	电压线路	1.5 W	0.31
		8 VA	0.99
	电流线路	1 VA	0.03

4．试验结论：符合

56．电流回路阻抗试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4．6．2 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5．6． 2 条
3．试验结果：

样品編号	$\mathrm{R}-2344-04$				
电压	电流	试验要求	允许值	试验结果	
$U_{\text {In }}$	$I_{\text {wou }}$	10 次实负载拉合闸 间隔 20 s 通 10 s	$2 \mathrm{~m} \Omega$	0.91	

4．试验结论：符合

57．耐受长期过电压试验

1．技术条件：单相智能电能表（2020 版）通用技术规范二．4．6．3 条
2．试验方法：单相智能电能表（2020 版）通用技林规范 二．5．6．3 条
3．试验结果：

样品编号	R－2344－09			
电压	持续时间	试验要求	试验结果	
$1.9 U_{\text {umm }}$	4 h	试验期间，仪表可以有损坏，但是危险带电部件不应暴露； 不应出现火焰，或者如果出现，火焰应被遏制在仪表内	符合要求	

4．试验结论：符合

58．通信模块接口带载能力试验

1．技术条件：单相智能电能表（2020）版）通用技术规范二．4．3．4．6条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5．6．4 条
3．试验结果：

样品编号	R－2344－09
试验要求	试验结果
输出电压：$+12 \mathrm{~V} \pm 1 \mathrm{~V}$	11.39
纹波：$<12 \mathrm{mV}$	9.3

4．试验结论；符合

59．通信模块互换能力试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二． 4.12 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5．6．5 条
3．试验结果：

样品编号	R－2344－09		
	试验要求	试验结果	
支持热插拔，表内存贮的认量数据和参数不应受到影响和改变	符合要求		
抄表时间数据5次，电能表应答正常	符合要求		

4．试验结论：符合

60．储能器件放电试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4．3．5．c）条
2．试验方法：单相智能电能表（2020）版）通用技代规范 二．5． 6.6 条
3．试验结果：

样品编号	$\mathrm{R}-2344-01$		
试验条件	试验温度	允许误差	试验结果
加载标称电压 10 min 后，取出时钟电池且在 断电，静置2天$\quad-40^{\circ} \mathrm{C}$		+3	
	$+70^{\circ} \mathrm{C}$	5 s	-1

4．试验结论：符合

61．脉冲电压试验

1．技术条件：单相智能电能表（2020版）通用技术规范 二．4．7．1 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二，5．7．2 条
3．试验结果：

样品编号	$\mathrm{R}-2344-05$
试验项目	试验结果
线路对地 6 kV	符合要求

4．试验结论：符合

62．交流电压试验

1．技术条件：单相智能电能表（2020 版）通用技术规范－．4．7．2 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5．7． 3 条 3．试验结果：

样品编号	$\mathrm{R}-2344-05$	
试验项目	试验要求	试验结果
线路对地 3 kV	试验中不应出现火花放电，闪络或击穿	符合要求
	试验后，仪表应无损坏	符合要求
	符合基本最大允许误差极限的要求	符合要求

4．试验结论：符合

63．安全认证试验

1．技林条件：单相智能电能表（2020 版）通用技林规范 四． 4.8 条，单相智能电能表（ 2020 版）通用技术规范 五． 7.2 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 五． 8.1 条
3．试验结果：

样品编号	R－2344－10		
项目	试验分项	试验结果	
身份认证时效	身份认证时效性测试	符合要求	
身份认证失效	身份认证失效性测试	符合要求	
防攻击能力	防攻击能力测试	符合要求	
红外认证能力	红外认证功能测试	符合要求	

4．试验结论：符合

64．密钥更新试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 五． 7.11 条
2．试验方法：单相智能电能表（ 2020 版）通用技术规范 五． 8.4 条
3．试验结果：

样品编号	$\mathrm{R}-2344-10$		
项目	试验分项	试验结果	
密钥更新功能	正确参数的密钥下装	符合要求	
密钥恢复功能	正	确数的密钥恢复	

4．试验结论：符合

65．远程控制试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 四，4．13条，4．16条，4．17条，单相智能电能表（2020 版）通用技术规范 五．7．13 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 五． 8.6 条
3．试验结果：

样品编号	$\mathrm{R}-2344-10$	
项目	试验分项	试验结果
保电	保电功能测试	符合要求
跳合间	跳合闸测试	符合要求
报警	报警测试	符合要求

4．试验结论：符合

66．参数更新试验

1．技术条件：单相智能电能表（2020版）通用技术规范 四．4． 12 条，单相智能电能表（2020版）通用技术规范 五．7． 4 条， 7.10 条，7．12条，7．15条
2，试验方法：单相智能电能表（2020 版）通用技术规范 五． 8.5 条
3．试验结果：

样品编号	R－2344－10	
项目	试验分项	试验结果
安全模式参数测试	公钥下安全模式参数测试	符合要求
	私钥下安全模式参数测试	符合要求
数据回抄功能	数据回抄测试	符合要求
电能表清零功能	远程清零测试	符合要求

4．试验结论：符合

67．电能量分项累计存储试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 四，4．1条，4．6条，附录 E
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5． 10 条， 5.11 条
3．试验结果：

样品编号		R－2344－10	
项目		试验要求	试验结果
组合有功	总	存储 12 个结算日电能量	符合要求
	T1～T12		
正向有功	总		符合要求
	T1 \sim T12		
反向有功	总		符合要求
	T1～T12		

4．试验结论：符合

68．费率和时段试验

1．技术条件：单相智能电能表（2020版）通用技术规范 四，4．4条，附录 E
2．试验方法：单相智能电能表（2020版）通用技术规范 二．5． 10 条， 5.11 条
3．试验结果：

样品编号	R－2344－10	
项目	试验要求	试验结果
两套时区，时段表	自动切换	符合要求
时区表	可切换	符合要求
日时段表	可切换	符合要求

4．试验结论：符合

69．事件记录试验

1．技术条件：单相智能电能表（2020版）通用技术规范 四． 4.7 条，附录 E
2．试验方法：单相智能电能表（2020 版）通用技术规范 二． 5.10 条， 5.11 条 3．试验结果：

样品编号	$\mathrm{R}-2344-10$	
项目	试验要求	试验结果
编程	最近 10 次事件记录	符合要求
校时	最近 10 次事件记录	符合要求
广播校时	最近 100 次事件记录	符合要求
电能表清零	永久记录	符合要求
事件清零	最近 10 次事件记录	符合要求
掉电	最近 100 次事件记录	符合要求
拉闸事件	最近 10 次事件记录	符合要求
合闸事件	最近 10 次事件记录	符合要求
时钟故障	最近 10 次事件记录	符合要求
零线电流异常	最近 10 次事件记录	符合要求
事件跟随上报	按照模式字及属性配置要求实现跟随上报	符合要求
事件主动上报	按照模式字及属性配置要求实现主动上报	符合要求

4．试验结论：符合

70．冻结功能试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 四． 1.6 条，附录 E
2．试验方法：单相智能电能表（2020版）通用技术规范二． 5.10 条， 5.11 条
3．试验结果：

4．试验结论：符合

71．负荷记录试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 四．4． 6 条，附录 E
2．试验方法：单相智能电能表（2020 版）通用技术规范 二． 5.10 条， 5.11 条
3．试验结果：

样品编号	R－2344－10		
项目	试验要求	试验结果	
负荷记录数据类	正确存储	符合要求	
每类负荷记录的时间隔	可设置	符合要求	
负荷记录抄读	支持不同负荷记录抄读方式	符合要求	

4．试验结论：符合

72．软件比对功能试验

1．技术条件：单相智能电能表（2020 版）通用技代规范 四．4．19 条，单相智能电能表（2020 版）通用技术规范 二．5．10条，5． 11 条
2．试验方法：单相智能电能表（2020 版）通用技术规范 五．7． 16 条
3．试验结果：

样品编号	$\mathrm{R}-2344-10$	
项目	试验要求	试验结果
软件比对	支持软件加密比对功能	符合要求

4．试验结论：符合

73．通信规约一致性

1．技术条件：单相智能电能表（2020版）通用技术规范 二． 5.10 条
2．试验方法：Q／GDW 11778－2017 面向对象的用电信息数据交换协议
3．试验结果：

样品编号	R－2344－09		
项目	试验要求		试验结果
通信架构	支持＂客户机／服务器＂的信息交换，支持预连接的数据交换，服务器构成完整。	信息交换模型	符合要求
		数据交换过程	符合要求
		服务器模型	符合要求
数据链路层	采用异步式传输帖结构，数据帧编码规则，格式及时序正确。	帧格式	符合要求
		长度域	符合要求
		控制域	符合要求
		地址域	符合要求
		链路用户数据	符合要求
		帧校验	符合要求
		字节格式	符合要求
		传输规则	符合要求
应用层	支持通信协议规定的应用层服务，APDU遵循 A－XDR 编码规则。	预连接	符合要求
		应用连接	符合要求
		读取	符合要求
		设置	符合要求
		操作	驸合要求
		安全传输	符合要求
		跟随上报信息域	符合要求
		时间标签域	符合要求
		异常㑸应	符合要求

4．试验结论：符合

74．通信功能试验

1．技术条件：单相智能电能表（2020 版）通用技术规范 四． 4.8 条，附录 E
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5． 10 条， 5.11 条
3．试验结果：

样品编号	$\mathrm{R}-2344-10$	
项目	试验要求	试验结果
通信地址抄读设置	通信地址可抄读设置	符合要求
波特率设置	波特率可设置	符合要求

4．试验结论：符合

75．时钟功能试验

1．技术条件：单相智能电能表（2020版）通用技术规范 四．4． 3 条，附录 E
2．试验方法：单相智能电能表（2020 版）通用技术规范 二．5． 10 条， 5.11 条
3．试验结果：

样品编号	$\mathrm{R}-2344-10$	
项目	试验要求	试验结果
闰年测试	闰年自动转换功能	符合要求
日历测试	日历历自动转换功能	符合要求
广播校时测试	支持明文和密文的广播校时	符合要求

4．试验结论：符合

76．外观及标志检查

1．技术条件：单相智能电能表（2020版）通用技术规范三．6．1条，单相智能电能表（2020 版）通用技术规范 二． 4.3 条
2．试验方法：通过目测，标尺，基准器具等检查电能表外观及标志
3．试验结果：

样品编号	R－2344－09	
项目	试验要求	试验结果
电能表尺寸	（高） 160 mm	159.34
	（宽） 112 mm	111.47
	（厚） 71 mm	71.53
表盖颜色电池仓颜色	$\mathrm{L}=+83.54$	＋81．99
	$a=-0.63$	＋0．06
	$b=+3.23$	＋3．76
表座颜色端子座颜色	$\mathrm{L}=+73.14$	＋68．35
	$a=-0.65$	＋0．88
	$\mathrm{b}=+0.87$	＋0．09

项目	试验结果
端子位置	符合要求
显示	符合要求
按键	符合要求
指示灯	符合要求
接线图	符合要求

4．试验结论：符合

77．功能检査

1．技术条件：单相智能电能表（2020 版）通用技术规范 二．4．4 条，单相智能电能表（2020 版）通用技术规范 四．4 条
2．试验方法：单相智能电能表（2020 版）通用技术规范－．5． 11 条，单相智能电能表（ 2020 版）通用技术规范 四． 4 条
3．试验结果：

样品编号	R－2344－05	
项目	试验要求	试験结果
计量功能	可计量正向总及各费率电量	符合要求
计时功能	具有日历，计时功能	符合要求
显示功能	可显示电量，时间，报警，通信等信息，可上电全显，背 光可自动关闭	符合要求
报警功能	有错误代码或报警提示，背光持续点亮	符合要求
停电抄表	停电状态下，能够通过按键唤醒电能表，并抄读数据	符合要求
脉冲输出	具有光脉冲，电脉冲，时钟脉冲输出功能	符合要求

4．试验结论：符合

附录 1 电压暂降和短时中断试验布置图

图 1 电压暂降和短时中断试验布置图

附录 2 电压暂降和短时中断试验接线图

电压皙降和短时中斯设备
图2 电压暂降和短时中断试验接线图

附录 3 外部工频磁场试验接线布置图

图 3 外部工频磁场试验接线布置图

附录 4 射频场感应的传导干扰试验布置图

图4 射频场感应的传导干扰试验布置图

附录 5 射频场感应的传导干扰试验接线图

图 5 射频场感应的传导干扰试验接线图

附录 6 静电放电试验接线布置图

图 6 静电放电试验接线右置图

附录 7 射频电磁场试验接线布置图

图7 射频电磁场试验接线布置图

附录 8 快速瞬变脉冲群试验布置图

图 8 快速瞬变脉冲群试验布置图

附录 9 快速瞬变脉冲群试验接线图（电网电源端П）

图9 快速瞬变脉冲群试验接线图（电网电源端口）

附录 10 快速瞬变脉冲群试验接线图（信号端口）

图 10 快速瞬变脉冲群试验接线图（信号端口）

附录 11 浪涌试验布置图

图 11 浪涌试验布置图

附录 12 浪涌试验接线图（电网电源端门）

图 12 浪涌试验接线图（电网电源端口）

附录 13 浪涌试验接线图（信号端口）

图 13 浪涌试验接线图（信号端口）

附录 14 传导差模电流干扰试验布置图

图 14 传导差模电流干扰试验布置图

附录 15 振铃波试验布置图

图 15 振铃波试验布置图

附录 16 振铃波试验接线图（电网电源端口）

图 16 振铃波试验接线图（电网电源端口）

附录 17 振铃波试验接线图（信号端口）

图 17 振铃波试验接线图（信号端山）

附录 18 传导差模电流干扰试验接线图

图 18 传导差模电流干扰试验接线图以下空白

