国网计量中心有限公司

检验报告

检字第 SGCM010220200235 号

样品名称 A级单相费控智能电能表

(远程-开关内置)

样品型号 DDZY149-M

制造单位 宁波迦南智能电气股份有限公司

委托单位 宁波迦南智能电气股份有限公司

检验类别 委托全性能试验

发布日期 2020年12月14日

地均	止: 中国北京市清河小营东路 15 号	传 真:	010-82413640
邮纠	扁: 100192	服务电话:	010-82812332
网山	止: http://www.epri.sgcc.com.cn	监督电话:	010-82813239

注意事项

- 1、 检验报告无检验测试机构章无效。
- 2、 检验报告无检验人员、校核人、签发人的签字无效。
- 3、 检验报告涂改无效。
- 对本检验报告若有异议,应于报告收到之日起十五日内向本检验测 试机构提出,逾期不予受理。
- 5、 检验结果只对被试样表负责。
- 6、 检验报告部分复制无效。
 - 7、 样品来源信息为客户提供,实验室不负责其真实性。

国网计量中心有限公司 检验报告

产品名称	A级单相费控智能电能表 (远程-开关内置)	型号	DDZY149-M
委托单位	宁波迦南智能电气股份有限公司	检验类别	委托全性能试验
制造单位 及代码	宁波迦南智能电气股份有限公司 (0114)	样品等级	有功 A 级
委托单位 地址	浙江省慈溪市科技路 711 号	收样日期	2020.09.28
取样方式	自取	样品数量	10 只
额定电压	220V	电流量程	0.25-0.5(60)A
额定频率	50Hz	仪表常数	2000 imp/kWh
环境温度	23℃±2℃	相对湿度	45%~75%
检验日期	2020-09-28~2020-12-03	检验项目	七十七项
			5
样品编号	R-2344-01, R-2344-02, R-2344-03, R-2344-06, R-2344-07, R-2344-08,		
		R-2344-09, R-234	4-10
检验依据	R-2344-06, R-2344-07, R-2344-08, 单相智能电能表(2020版)通用技术规	R-2344-09, R-234	4-10
样品编号 检验依据 检验结论	R-2344-06, R-2344-07, R-2344-08, 单相智能电能表(2020版)通用技术规 Q/GDW 11778-2017 面向对象的用电 受检样品所有检验项目的技力	R-2344-09, R-234	4-10

国网计量中心有限公司 检验报告

测试用计量器具/重要仪器:

序号	设备名称	档案编号	证书编号	有效期	状态
1	防尘试验箱	SGCM-DC-YQ-126	GFJGJL1001181208362	2020-12-26	正常
2	低功率因数瓦特表	SGCM-DC-YQ-013	SGCM011120200004	2021-01-08	正常
3	数显式推拉计	SGCM-DC-YQ-173	LSff2020-00389	2021-01-31	正常
4	电动振动试验台	SGCM-DC-YQ-340	JA20S-CC000009	2021-02-19	正常
5	垂直冲击试验台	SGCM-DC-YQ-341	JA20S-CC000010	2021-02-19	正常
6	弹簧冲击锤	SGCM-DC-YQ-390	LScj2020-01936	2021-05-14	正常
7	工频磁场抗扰度试验 装置	SGCM-DC-YQ-438-1	DCcx2020-00582	2021-05-20	正常
8	步入式高低温湿热试 验箱	SGCM-DC-YQ-366	RGjc2020-03475	2021-06-13	正常
9	直接双向交互通信检 测平台	SGCM-DC-YQ-617	SGCM011020190066	2021-07-09	正常
10	单相电能表检定装置	SGCM-DC-YQ-380	SGCM011020200014	2022-04-29	正常
11	电能表谐波试验装置	SGCM-DC-YQ-447	SGCM011220200057	2022-07-21	正常
12	GTEM 横电磁波传输 室	SGCM-DC-YQ-284	XDdj2019-0610	2024-02-13	正常

试验结果汇总

序号	检验项目	页码	试验结果
1	初始固有误差	5	符合
2	起动试验	6	符合
3	潜动试验	6	符合
4	电能表常数试验	6	符合
5	电子指示显示器电能示值组合误差	7	符合
6	由电源供电的时钟试验	7	符合
7	采用备用电源工作的时钟试验	7	符合
8	环境温度对时钟准确度的影响	8	符合
9	误差一致性试验	8	符合
10	变差要求试验	8	符合
11	负载电流升降变差试验	9	符合
12	重复性试验	9	符合
13	交流电压暂降和短时中断试验	10	符合
14	静电放电试验	10	符合
15	射频电磁场(电流电路中无电流)试验	10	符合
16	射频电磁场(电流电路中有电流)试验	11	符合
17	快速瞬变脉冲群试验	12	符合
18	射频场感应的传导干扰试验	12	符合
19	传导差模电流干扰试验	13	符合
20	浪涌试验	13	符合
21	振铃波试验	14	符合
22	外部恒定磁场试验	14	符合
23	外部工频磁场试验	15	符合
24	外部工频磁场(无负载条件)试验	15	符合
25	外部工频磁场干扰试验	15	符合
26	测量及监测误差试验	16	符合
27	测量及监测零线电流误差试验	16	符合
28	电流和电压电路中谐波-第5次谐波试验	17	符合
29	电流和电压电路中谐波-方顶波波形试验	17	符合
30	电流和电压电路中谐波-尖顶波波形试验	17	符合
31	电流电路中的间谐波-脉冲串触发波形试验	18	符合
32	电流电路中的奇次谐波-90度相位触发波形试验	18	符合
33	直流和偶次谐波-半波整流波形试验	18	符合
34	电压改变试验	19	符合
35	环境温度改变试验	20	符合
36	频率改变试验	21	符合
37	辅助装置工作试验	21	符合
38	短时过电流试验	22	符合
39	负载电流快速改变试验	22	符合
40	自热试验	22	符合
41	高次谐波试验	23	符合

试	验	结	果	汇	总	(续)	
 	-	-					

茅号	检验项目	页码	试验结果
42	高温试验	23	符合
43	低温试验	23	符合
44	交变湿热试验	24	符合
45	极限工作环境试验	24	符合
46	防尘试验	24	符合
47	防水试验	25	符合
48	冲击试验	25	符合
49	振动试验	25	符合
50	弹簧锤试验	26	符合
51	电能表温度限值及耐热试验	26	符合
52	防火焰蔓延	26	符合
53	接线端子压力试验	27	符合
54	通信状态的功耗试验	27	符合
55	非通信状态的功耗试验	27	符合
56	电流回路阻抗试验	28	符合
57	耐受长期过电压试验	28	符合
58	通信模块接口带载能力试验	28	符合
59	通信模块互换能力试验	29	符合
60	储能器件放电试验	29	符合
61	脉冲电压试验	29	符合
62	交流电压试验	30	符合
63	安全认证试验	30	符合
64	密钥更新试验	30	符合
65	远程控制试验	31	符合
66	参数更新试验	31	符合
67	电能量分项累计存储试验	32	符合
68	费率和时段试验	32	符合
69	事件记录试验	33	符合
70	冻结功能试验	33	符合
71	负荷记录试验	34	符合
72	软件比对功能试验	34	符合
73	通信规约一致性	35	符合
74	通信功能试验	35	符合
75	时钟功能试验	36	符合
76	外观及标志检查	36	符合
77	功能检查	37	符合

1. 初始固有误差

- 1. 技术条件:单相智能电能表 (2020 版) 通用技术规范 二. 4. 5. 1 条
- 2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 2. 1 条
- 3. 试验结果:

样品编号		R-2344-01	
功率因数	允许误差 %	电流	实际误差 %
	± 0.9	I_{min}	0.0
		I_{ij}	0.0
1.0	100	101.,	0.0
	± 0.6	0.5 <i>I</i> _{#ux}	0.0
		$I_{ m max}$	0.0
	±0,9	$I_{a\mathrm{in}}$	0.0
		I_{tr}	0.0
0.5L		10 <i>I</i> .,	0, 0
	±0.6	$0.5I_{max}$	0.0
		$f_{\rm max}$	-0.1
	± 0.9	I_{win}	0.0
		<i>I</i> ₁₁	0.0
0.8C	±0.6	101.,	0,0
	±0.0	0. 5 <i>I</i>	0.0
		$I_{\rm max}$	0.0

编号: SGCM010220200235

2. 起动试验

1,技术条件:单相智能电能表(2020版)通用技术规范 二.4.5.2条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二. 5. 2. 2 条

3. 试验结果:

样品编号		R-2344-01	
功率因数	电流	试验要求	试验结果
1.0	$0.04I_{tr}$	能起动并连续记录	符合要求

电流	允许误差 %	实际误差 %
0. 04 <i>I</i> ₁₁	±18.75	-0.20

4. 试验结论: 符合

3. 潜动试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4.5.3 条

2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二.5.2.3 条

3. 试验结果:

样品编号	R-2344-01		
电压	试验要求	试验结果	
1.1U	在规定时间内不应产生多于一个脉冲	符合要求	

4. 试验结论: 符合

4. 电能表常数试验

- 1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4. 5. 4 条
- 2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 2. 4 条
- 3. 试验结果:

样品编号	R-2344-01	R-2344-01		
	试验要求	试验结果		
测试输出与显	示器指示之间的关系,应与铭牌标志一致	符合要求		

5. 电子指示显示器电能示值组合误差

1. 技术条件: 单相智能电能表 (2020版) 通用技术规范 二. 4.5.5条

2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 2. 5 条

3. 试验结果:

样品编号	R-2344-09	
项目	试验结果	
尖电量(kWh)	3. 3030	
峰电量(kWh)	2. 6895	
平电量(kWh)	0. 6975	
谷电量(kWh)	3. 3015	
各分时电量之和(kWh)	9.9915	
总电量(kWh)	9. 9915	
允许误差	0. 0030	
实际误差	0.0000	

4. 试验结论: 符合

6. 由电源供电的时钟试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4. 5. 6. a) 条

- 2. 试验方法: 单相智能电能表(2020版)通用技术规范 二. 5. 2. 6. 1条
- 3. 试验结果:

样品编号	R-2344-04		
允许误差	实际误差		
±0.5s/24h	0.00		

4. 试验结论: 符合

7. 采用备用电源工作的时钟试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4. 5. 6. b) 条

2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 2. 6. 2 条

3. 试验结果:

样品编号	R-2344-01		
允许偏差	实际偏差		
±2s/72h	+1		

8. 环境温度对时钟准确度的影响

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二, 4.5.6. c) 条

2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 2. 6. 3 条

3. 试验结果:

样品编号	¥品编号 R-2344-04			
试验要求	允许误差	试验结果		
-25°C	1.1.10.0	+0.09		
+55℃	±1s/24h	+0.09		

试验要求	允许偏差	试验结果	
-25℃~+23℃	1.0.1.10.10.0	0.00	
+23°C~+55°C	±0.1s/°C/24h	0.00	

4. 试验结论: 符合

9. 误差一致性试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4.5.7 条

2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 2. 7 条

3. 试验结果:

样品编号	R-2344-02			
功率因数	允许偏差 %	电流	实际误差偏差 %	
1.0			0.00	
0.5L	± 0.3	± 0.3 10 <i>I</i> ₀		
1.0	±0.4	I_{n}	0,00	

4. 试验结论: 符合

10. 变差要求试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4.5.8 条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二. 5. 2. 8 条

3. 试验结果:

样品编号		R-2344-01	
功率因数	允许变差 %	电流	实际变差 %
1.0	0.0	107	0.01
0.5L	0.2	1011	0.02

11. 负载电流升降变差试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4. 5. 9 条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二.5.2.9 条

3. 试验结果:

样品编号		R-2344-01	
功率因数	允许变差 %	电流	实际变差 %
		\hat{T}_{max}	0.01
1.0	0.25	101,,	0.00
		Inin	0.00

4. 试验结论: 符合

12. 重复性试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 二. 4.5.10条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二. 5. 2. 10条

3. 试验结果:

样品编号		R-2344-01	
功率因数	电流	允许误差 %	实际重复性误差 %
	0.5 <i>I</i> ₀	0, 15	0. 02
	I_{ir}		0.02
1.0	$10I_{ir}$		0.01
	I_{max}		0.00
	$I_{ m cr}$		0.02
0.5L	$10I_{ m er}$	0.1	0.01
	I_{max}		0.01
	I _{ir}		0,01
0.8C	10 I.		0.01
	$T_{\rm max}$		0.00

13. 交流电压暂降和短时中断试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4.5.11 条

2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 3. 3. 2 条

3. 试验结果:

样品编号		344-07			
试验环境	温度:	23.1 °C	湿度:	56.9 %RH	
	试验要求			试验结果	
工作正常,信息无变化;			符合要求		
寄存器值的改变不大于 0.0132kWh;					
符合基本	最大允许误差极限	的要求。			

4. 试验结论: 符合

14. 静电放电试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 二. 4.5.11 条

- 2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二, 5. 3. 3. 3 条
- 3. 试验结果:

样品编号	R-2344-07				
试验环境	温度: 23.0 ℃ 试验要求		湿度:	54.4 %RH	
试验条件			试验结果		
直接放电 空气放电±15kV 间接放电 耦合板接触放电±8kV	工作正常,信息无变化; 寄存器值的改变不大于 0.0132kWh; 符合基本最大允许误差极限的要求。			符合要求	

4. 试验结论: 符合

15. 射频电磁场(电流电路中无电流)试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4.5.11 条

- 2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 3. 3. 4 条
- 3. 试验结果:

样品编号	R-2344-06				
试验环境	温度:	23.3 °C	湿度:	52.8 %RH	
试验条件	试验要求		试验结果		
场强 30V/m 频带 80MHz~6GHz	寄存器值的改变	工作正常,信息无变化; 寄存器值的改变不大于 0.0132kWh; 符合基本最大允许误差极限的要求。		符合要求	

16. 射频电磁场(电流电路中有电流)试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 二. 4.5.11 条

2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 3. 3. 5 条

3. 试验结果:

样品编号	R-2344-07				
试验环境	温度	温度: 23.4℃		湿度:	56.9 %RH
试验要求	功率因数	电流	允许误差偏移 %	频率	实际误差偏移 %
20.000				80MHz	+0.01
				120MHz	+0.01
				200MHz	0.00
				300MHz	0.00
				400MHz	+0.08
				500MHz	-0.02
				600MHz	0.00
				700MHz	+0.01
				800MHz	-0.01
				900MHz	+0.03
				1000MHz	+0.01
				1100MHz	+0.01
				1200MHz	+0.01
				1300MHz	+0.01
电磁场强度 10V/m	1.0	1.0 101,	$0 10I_{ir} \pm 2.0$	1400MHz	+0.01
				1500MHz	+0.01
				1600MHz	+0,01
				1700MHz	+0.01
				1800MHz	+0.01
				1900MHz	+0,01
				2000MHz	+0.01
				2500MHz	+0. 02
				3000MHz	+0,02
				3500MHz	+0.02
				4000MHz	+0.01
				4500MHz	+0.02
				5000MHz	+0.02
			1 1	5500MHz	+0.02
			1. 1	6000MHz	+0.02

17.快速瞬变脉冲群试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4.5.11 条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二. 5. 3. 3. 6 条

3. 试验结果:

样品编号			R-2344-06			
试验环境	温度:	23.1 °C	湿度:	5	52, 9 %RH	
功率因数	电流	允许误差偏移 %	试验电路	试验电压	实际误差偏移 %	
		12 2 2 2 2	너 (교) 너 생각 눈뜨 (그	+4kV	0.00	
	电网电源端口			电网电探师口	-4kV	0.00
1.0	10 <i>I</i> .,	±4.0		+2kV	0.00	
			信号端口	-2kV	0.00	

4. 试验结论: 符合

18. 射频场感应的传导干扰试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 二. 4. 5. 11条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二. 5. 3. 3. 7 条

3. 试验结果:

样品编号			R-2344-07		
试验环境	温度:		23.0 °C	湿度:	53.9 %RH
试验条件	功率因数	电流	允许误差偏移 %	频率	实际误差偏移 %
				150kHz	0.00
				500kHz	0.00
				1MHz	0,00
		$10I_{m}$		10MHz	0.00
No. to re the				20MHz	0.00
仪表工作	1.0		± 2.0	30MHz	0.00
电压等级 10V				40MHz	+0.01
				50MHz	+0.01
				60MHz	+0.01
				70MHz	0.00
				80MHz	0.00

19. 传导差模电流干扰试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 二. 4.5.11 条

2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 3. 3. 8 条

3. 试验结果:

样品编号	R-2344-07					
试验环境	温度:	23.2 °C	湿度:	53.1 %RH		
功率因数	电流	允许误差偏移 %	波形	实际误差偏移 %		
		10.02.000	3Hz 调制	+0.11		
			101Hz 调制	-0.08		
1.0	$10I_{m}$	± 4.0	301Hz 调制	-0.09		
			601Hz 调制	-0.14		
			连续波	-0.02		

4. 试验结论: 符合

20. 浪涌试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 二. 4.5.11 条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二. 5. 3. 3. 9 条

3. 试验结果;

样品编号	R-2344-07			
试验环境	温度;	23.0 °C	湿度: 5	3.3 %RH
试验线路	试验条件	试验要求	ជ័	战验结果
电网电源端口	差模±4kV 阻抗 2Ω 正负极性各 5 次	工作正常,信息无变 寄存器值的改变不大于 0. 符合基本最大允许误差极网	0132kWh: 🕴	守合要求

21. 振铃波试验

- 1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4.5. 11 条
- 2. 试验方法: 单相智能电能表(2020版)通用技术规范 二.5.3.3.10 条

3. 试验结果:

样品编号		R-234	4-07	
试验环境	温度:	23.4 °C	湿度:	55.1 %RH
试验线路	试验条件	试验	来要求	试验结果
	共模±4kV			1.2.1
	阻抗 12 Ω			
中國山湖市中中	正负极性各5次			
电网电源端口	差模±2kV	工作正常,信	言息无变化;	
	阻抗 12 Ω	寄存器值的改变不	大于 0.0132kWh;	符合要求
	正负极性各5次	符合基本最大允许	误差极限的要求。	
	共模±1kV			
ELV 信号端口	阻抗 30 Ω			
	正负极性各5次			

4. 试验结论: 符合

22. 外部恒定磁场试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4.5.11 条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二. 5. 3. 3. 11 条

3. 试验结果:

样品编号	R-2344-08			
试验条件	试验要求	试验结果		
	磁场施加在四个面, 各持续 20min, 电能表不死机、不黑屏	符合要求		
200mT 恒定磁场	试验过程中,负荷开关不能误动作	符合要求		

试验条件	电流	功率因数	允许误差偏移 %	实际误差偏移 %
200mT恒定磁场	$10I_{tr}$	1.0	± 1.5	-0.01

23. 外部工频磁场试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 二. 4.5.11 条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二, 5. 3. 3. 12 条

3. 试验结果:

样品编号			R-2344-08	
试验环境	温度:	23.4 °C	湿度:	53.0 %RH
磁场强度	功率因数	电流	允许误差偏移 %	实际误差偏移 %
	1.0	101,,	1.1.0	+0.01
0. 5mT	1.0	Iwax	±1.3	+0.01

4. 试验结论: 符合

24. 外部工频磁场 (无负载条件) 试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 二. 4. 5. 11条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二. 5. 3. 3. 13 条

3. 试验结果:

样品编号		R-2344-0	8	_
试验环境	温度:	23.1 °C	湿度:	54.9 %RH
电压		试验要求		试验结果
$1.15U_{mm}$	在 0,5mT 工频磁均	杨干扰中,规定时间内不应	产生多于一个脉冲	符合要求

4. 试验结论; 符合

25. 外部工频磁场干扰试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4. 5. 11 条

- 2. 试验方法: 单相智能电能表(2020版)通用技术规范 二, 5. 3. 3. 14 条
- 3. 试验结果:

样品编号	R-2344-08			
试验环境	温度:	23.3 °C	湿度;	53.7 %RH
试验条件		试验结果		
施加在三个垂直平面	工作正常,信息无变化			符合要求
磁感应强度 1000A/m	寄存者	寄存器值的改变不大于 0.0132kWh		符合要求
持续时间 3s	符合封	基本最大允许误差极限	的要求	符合要求

26. 测量及监测误差试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 四. 4. 11 条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 四. 4. 11 条

3. 试验结果:

样品编号		R-2344-01	
测量类型	测量负载	允许误差 %	实际引用误差 %
	$1.2U_{\rm row}$		+0.01
电压	, U _{ntern}		+0.01
	0.6U	1	-0.02
	$1.2I_{will}$		-0.05
电流	$10I_{rr}$	110	0.00
	Imm	$\pm 1, 0$	0.00
	$1.2U_{\rm orm}, 1.2I_{\rm max}, 1.0$		-0.06
功率	$U_{\rm irowr} 10 I_{\rm irr} 1.0$		0.00
	$U_{\rm new}$, 0. 04 $I_{\rm M}$, 1. 0		0.00
功率因数	0. 5L		+0.04

4. 试验结论: 符合

27. 测量及监测零线电流误差试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 四. 4. 11条

2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 四. 4. 11 条

3. 试验结果:

样品编号	R-2344-04				
测量类型	测量负载	允许误差 %	实际引用误差 %		
	$1.2I_{max}$		-0.05		
零线电流	$10I_{ m tr}$	± 1.0	+0.01		
	I_{μ}		+0, 01		

28. 电流和电压电路中谐波-第5次谐波试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 二. 4.5.11 条

2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 3. 4. 1. 2 条

3. 试验结果:

样品编号				R-234	4-03	
功率因췣	电流		试验要求		允许误差偏移 %	实际误差偏移 %
1.0	0.51	D-0 040	谐波与基	0°	10.0	-0.02
1.0	$0, 5I_{\text{max}}$	$P_5=0.04P_1$	波相位	180°	± 0.8	-0.02

4. 试验结论: 符合

29. 电流和电压电路中谐波-方顶波波形试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4.5.11 条

2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二, 5. 3. 4. 1, 3 条

3. 试验结果:

样品编号			R-2344-03	
试验条件	功率因数	电流	允许误差偏移 %	实际误差偏移 %
方顶波	1.0	107.,	± 0.6	+0.01

4. 试验结论: 符合

30. 电流和电压电路中谐波-尖顶波波形试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4. 5. 11 条

2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 3. 4. 1. 4 条

3. 试验结果:

样品编号		R-2344-03			
试验条件	功率因数	电流	允许误差偏移 %	实际误差偏移 9	
尖顶波	1.0	$10I_{iv}$	± 0.6	+0.02	

4. 试验结论; 符合

31. 电流电路中的间谐波-脉冲串触发波形试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 二. 4. 5. 11 条

2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 3. 4. 1. 5 条

3. 试验结果:

样品编号				
试验条件	功率因数	电流	允许误差偏移 %	实际误差偏移 9
间谐波	1.0	10.1.,	±1.5	0.00

4. 试验结论: 符合

32. 电流电路中的奇次谐波-90 度相位触发波形试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4.5.11 条

2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 3. 4. 1. 6 条

3. 试验结果:

样品编号	R-2344-03				
试验条件	功率因数	电流	允许误差偏移 %	实际误差偏移 9	
奇次谐波	1.0	10 <i>I</i>	± 0.8	+0.01	

4. 试验结论: 符合

33. 直流和偶次谐波-半波整流波形试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 二, 4.5, 11 条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二.5.3.4.1.7条

3. 试验结果:

样品编号			R-2344-03	
试验条件	电流	功率因数	允许误差偏移 %	实际误差偏移 %
- the same rise Bill all - Shindalla	Imax/ 15	1.0	1.0.0	+2, 46
直流和偶次谐波	$\sqrt{2}$	0.5L	± 3.0	+2,24

34. 电压改变试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4. 5. 11 条

2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 3. 4. 2 条

3. 试验结果:

样品编号		R-2344-01				
功率因数	允许误差偏移 %	电压	电流	实际误差偏移		
			I_{ix}	-0.01		
1.0	± 1.0	1.15U	$10I_{cc}$	-0.02		
			I_{\max}	-0.01		
			I_{min}	+0.03		
1.0	± 0.5		10 <i>I</i> ,,	-0.01		
		1 17/	$I_{ m max}$	0.00		
		1. 1 U _{now}	I_{r_1}	-0.03		
0.5L	± 1.0		$10I_{ir}$	-0.01		
			$I_{\rm may}$	0,00		
	± 0.5		Inn	-0.04		
1.0			$10I_{cc}$	0.00		
		0.0//	$I_{\rm max}$	0.00		
		$0, 9U_{non}$	I_{tr}	-0,03		
0.5L	± 1.0		$10 I_{\alpha}$	-0,01		
			I_{\max}	-0.01		
			I_{ir}	-0.04		
1.0	± 1.0	0.85Unor	10 <i>I</i> .,	-0.01		
			I_{max}	-0.02		
100			I_{α}	-0.03		
1.0	± 1.0	0. 8Unre	10 I	0.00		
			$I_{\rm max}$	-0.02		

功率因数	允许误差 %	电流	电压	实际误差 %
			0.7 <i>U</i> ₁₀₀₀	+0.02
1.0			0.6 <i>U</i> _{ttree}	+0.02
		10 <i>1</i> .,	$0.5U_{\text{trans}}$	+0.03
	+10~-100		$0.4U_{\rm true}$	-100.00
			0. $3U_{\rm non}$	-100.00
			$0.2U_{non}$	-100,00
			0. $1U_{\text{nos}}$	-100, 00
			OV	-100.00

35.环境温度改变试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 二. 4.5.11 条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二. 5. 3. 4. 3 条

3. 试验结果:

样品编号	祥品编号 R-2344-04			
试验要求	功率因数	允许温度系数 %/K	电流	实际温度系数 %/I
	· · · · · · · · · · · · · · · · · · ·		$I_{\eta m}$	0.00
	1.0	± 0.05	101.,	0.00
-25°C ~-10°C			$\hat{T}_{ m max}$	0.00
-23 C			I_{iv}	0.00
	0.5L	± 0.07	$10I_{\rm cr}$	0.00
			I_{was}	0.00
	and the second second		$I_{\rm scm}$	0.00
	1.0	± 0.05	$10I_{\rm tr}$	0.00
-10°C~+5°C			I_{max}	0.00
-100-0450			I_{tr}	0,00
	0.5L	\pm 0. 07	$10I_{tr}$	0.00
			$I_{\rm max}$	0.00
		± 0.05	$I_{\omega_{10}}$	0.00
	1.0		10 <i>I</i> ₁ ,	0.00
+5°C~+23°C			$I_{\rm max}$	0.00
FDC - F25C		± 0.07	$I_{ m tr}$	0.00
	0.5L		101,,	0,00
			$I_{\rm stax}$	0.00
	1		I_{ain}	0.00
	1.0	± 0.05	$10I_{\rm tr}$	0.00
+23°C~+40°C			$I_{\rm max}$	0.00
+23 C ~ +40 C			I_{α}	0.00
	0.5L	± 0.07	$10I_{iv}$	0.00
		· · · · · · · · · · · · · · · · · · ·	$I_{\pi_{AX}}$	0.00
			T_{\min}	0.00
	1.0	± 0.05	10 I.,	0.00
+10°C ~ +55°C			$I_{\rm max}$	0.00
+40°C∼+55°C			\dot{T}_{01}	0.00
	0.51.	± 0.07	$10I_{ii}$	0.00
			$I_{\rm max}$	0.00

36.频率改变试验

- 1. 技术条件: 单相智能电能表(2020版)通用技术规范 二. 4. 5. 11 条
- 2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 3. 4. 4 条
- 3. 试验结果:

样品编号	And and a second s	R-23	344-01	
频率	允许误差偏移 %	功率因数	电流	实际误差偏移 %
			I_{xin}	-0.04
	± 0.5	1.0	$10I_{v}$	0.00
1011			$J_{\rm max}$	-0.01
49Hz		0. 51.	I_{tr}	-0.01
	±0.7		101.,	-0.01
			$I_{\rm max}$	0.00
		1.0	Imm	-0, 04
	± 0.5		101,,	0.00
511Ê-			$I_{\rm max}$	Ō. 00
51Hz			I_m	-0.02
	± 0.7	0.5L	101.,	0.00
	- 1 1 1 1		I_{mixy}	+0.01

4. 试验结论: 符合

37. 辅助装置工作试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 二. 4. 5. 11 条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二.5.3.4.5条

3. 试验结果:

样品编号	R-2344-01				
功率因数	试验条件	允许误差偏移 %	电流	实际误差偏移 9	
			$T_{\rm m,m}$	-0.01	
1.0	辅助装置工作	±0.3	I_{α}	-0.02	
	1		Imas	0,00	

38. 短时过电流试验

- 1. 技术条件: 单相智能电能表(2020版)通用技术规范 二. 4.5.11 条
- 2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 3. 4. 6 条
- 3. 试验结果:

样品编号	· · · · · · · · · · · · · · · · · · ·	R-2344-05				
试验条件		试验要求	试验结果			
	称频率半个周期的 301 _{mm} 后, 恢复到初始温度	工作正常,信息无变化	符合要求			

功率因数	电流	允许误差偏移 %	实际误差偏移 %
1, 0	$10I_{m}$	±1.5	+0, 02

4. 试验结论: 符合

39. 负载电流快速改变试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4. 5. 11 条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二. 5. 3. 4. 7 条

3. 试验结果:

样品编号		R-2344-08		
功率因数	电流	试验条件	允许误差 %	实际误差 %
		保持 10s, 中断 10s, 持续 4h		+0.02
1. 0	10 <i>I</i> 1,	保持 5s, 中断 5s, 持续 4h	± 2.0	0.00
		保持 5s, 中断 0.5s, 持续 4h		0.00

4. 试验结论: 符合

40. 自热试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 二. 4. 5. 11 条

- 2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 3. 4. 8 条
- 3. 试验结果:

样品编号	1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	R-2344-01	
电流	允许误差偏移 %	功率因数	实际误差偏移 %
Imax	0.5	1.0	-0.01
	±0.5	0, 5L	-0.04

41. 高次谐波试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 二. 4.5.11条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二. 5. 3. 4. 9 条

3. 试验结果:

样品编号	A Contract on	R-2344-03			
项目	功率因数	电流	允许误差偏移 %	谐波次数	实际误差偏移 %
de DC de Bb				15~40	+0.02
电压电路	1.6		1.1.0	40~15	+0.02
ala serata me	1.0	hu	± 1, 0	15~40	+0, 02
电流电路				40~15	+0.03

4. 试验结论: 符合

42. 高温试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 二. 4.5.11条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二. 5. 4. 2条

3. 试验结果:

样品编号		R-	2344-02	
试验条件	电流	功率因数	允许误差偏移 %	实际误差偏移 %
+70℃±2℃ 持续 72h	10 <i>I</i> _{ir}	1.0	± 0.33	+0.03

4. 试验结论: 符合

43. 低温试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4.5.11 条

3. 试验结果:

样品编号		R	2344-02	
试验条件	电流	功率因数	允许误差偏移 %	实际误差偏移 %
-40℃±2℃ 持续 72h	107.	1, 0	± 0.33	-0.01

^{2.} 试验方法: 单相智能电能表(2020版)通用技术规范 二, 5.4.3条

44. 交变湿热试验

- 1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4.5.11 条
- 2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 4. 4 条
- 3. 试验结果:

样品编号	R-2344-02		
试验条件	试验要求	试验结果	
工作状态,无电流 仪表在周期性变化的环境中暴露 6 个周期 恢复时间 24h	不应出现影响仪表功能特性的机械损 伤或腐蚀,绝缘脉冲电压试验符合要求	符合要求	

试验条件	电流	功率因数	允许误差偏移 %	实际误差偏移 %
交变湿热 6 个周期	$10I_{s_1}$	1.0	± 0.1	+0.06

4. 试验结论: 符合

45. 极限工作环境试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 二, 4.5.11 条

- 2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二.5.4.6 条
- 3. 试验结果:

样品编号			R-2344-04	
试验条件	电压	电流	试验要求	试验结果
			不死机,不黑屏	符合要求
环境温度 70℃运行 4h	$1.15 U_{um}$	Imag	工作正常,功能未受影响	符合要求
			符合基本最大允许误差极限的要求	符合要求

4. 试验结论: 符合

46.防尘试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4. 5. 11 条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二.5.4.7 条

3. 试验结果:

样品编号	R-2344-05		
试验条件	试验要求	试验结果	
非工作状态	不损坏仪表安全,不能沉积导致爬电距离缩短的灰尘	符合要求	
试验等级 IP5X	工作正常,功能未受影响	符合要求	
HOW HOX II ON	符合基本最大允许误差极限的要求	符合要求	

47. 防水试验

- 1. 技术条件: 单相智能电能表(2020版)通用技术规范 二. 4, 5. 11 条
- 2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 4. 8 条
- 3. 试验结果:

样品编号	R-2344-05		
试验条件	试验要求	试验结果	
工作状态,无电流	恢复24h, 工作正常	符合要求	
试验等级 IPX4	不应出现影响仪表功能特性的机械损伤或腐蚀	符合要求	
的/3页-3-5X 11 V-4	符合基本最大允许误差极限的要求	符合要求	

4. 试验结论: 符合

48. 冲击试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 二. 4. 5. 11 条

2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 5. 1 条

3. 试验结果:

样品编号	R-2344-01 电流 允许误差偏移 % 实际设				
功率因数					
1.0	10 <i>I</i> ₁₀	土0.33	0.00		

4. 试验结论: 符合

49. 振动试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4. 5. 11 条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二, 5, 5, 2 条

3. 试验结果:

样品编号	R-2344-01		
功率因数	电流	允许误差偏移 %	实际误差偏移 %
1.0	101.,	±0.33	-0,02

50. 弹簧锤试验

- 1. 技术条件: 单相智能电能表(2020版)通用技术规范 二. 4. 3. 10 条
- 2. 试验方法: 单相智能电能表(2020版)通用技术规范 二. 5. 5. 3 条
- 3. 试验结果:

样品编号	R-2344-	R-2344-05			
试验条件	试验要求	试验部位	试验结果		
0.2J 动能		表壳	符合要求		
冲击3次	不影响仪表工作,无触及带电部件的损伤	窗口	符合要求		
IT ULO IX		端子盖	符合要求		

4. 试验结论: 符合

51. 电能表温度限值及耐热试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 二. 4. 3. 11条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二. 5. 5. 4 条

3. 试验结果:

样品编号	R-2344-09				
电压	电流	功率因数	试验部位	修正后 温度限值 ℃	修正后 最高温度 で
1.15U	T	1.0	外壳	100	60.8
11.100.00	Twee	1.0	端子	120	76. 5

4. 试验结论: 符合

52. 防火焰蔓延

1. 技术条件: 单相智能也能表 (2020 版) 通用技术规范 二. 4.3.2 条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二.5.5.5 条

3. 试验结果:

样品编号	A	R-2344-01			
试验部位	试验温度	试验要求	试验结果		
表壳及端子盖	650°C±10°C	试验过程中, 仪表不应燃烧;	符合要求		
端子座	960℃±15℃	如发生燃烧,则应在移开灼热丝之后的 30s 内熄灭; 铺底层的绢纸不应起燃。	符合要求		

53. 接线端子压力试验

- 1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 三. 8. 5. f)~g) 条
- 2. 试验方法: 单相智能电能表(2020版)通用技术规范 三.8.5. f)~g)条

3. 试验结果:

样品编号	R-2344-05			
试验部位	试验条件	试验要求	试验结果	
电压、电流接线端子	60N	(かん) 24 フレイタービット かいしょう	符合要求	
辅助接线端子	10N	— 接线端子位移不应超过 0.5mm	符合要求	

4. 试验结论: 符合

54. 通信状态的功耗试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4. 6. 1 条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二. 5. 6. 1 条

3. 试验结果:

样品编号	R-	-2344-05
试验线路	允许值	试验结果
电压线路	3₩	0.7

4. 试验结论: 符合

55. 非通信状态的功耗试验

1. 技术条件: 单相智能电能表 (2020版) 通用技术规范 二. 4. 6. 1 条

2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 6. 1 条

3. 试验结果:

样品编号		R-2344-05	
试验要求	试验线路	允许值	试验结果
不带通信模块 背光关闭	电压线路	1.5W	0. 31
	电压线时	8VA	0, 99
HUXIN	电流线路	1VA	0.03

56. 电流回路阻抗试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4. 6. 2 条

2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 6. 2 条

3. 试验结果:

样品编号	R-2344-04			
电压	电流	试验要求	允许值	试验结果
$U_{\rm prom}$	Tunce	10 次实负载拉合闸 间隔 20s 通 10s	2m Ω	0. 91

4. 试验结论: 符合

57. 耐受长期过电压试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4. 6. 3 条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二. 5. 6. 3 条

3. 试验结果:

样品编号		R-2344-09	
电压 持续时间	试验要求	试验结果	
1.9 <i>U</i> _{nor}	4h	试验期间, 仪表可以有损坏, 但是危险带电部件不应暴露; 不应出现火焰, 或者如果出现, 火焰应被遏制在仪表内	符合要求

4. 试验结论: 符合

58. 通信模块接口带载能力试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 二. 4. 3. 4. 6 条

2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 6. 4 条

3. 试验结果:

样品编号	R-2344-09	
试验要求	试验结果	
输出电压: +12V±1V	11, 39	
纹波: <12mV	9.3	

4. 试验结论; 符合

59. 通信模块互换能力试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4. 12 条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二. 5. 6. 5 条

3. 试验结果:

样品编号	R-2344-09	
试验要求		试验结果
支持热插拔, 表内存贮的计量数据和参数不应受到影响和改变		符合要求
抄表明	计间数据5次,电能表应答正常	符合要求

4. 试验结论: 符合

60. 储能器件放电试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4. 3. 5. c) 条

2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 6. 6 条

3. 试验结果:

样品编号		R-2344-01	
试验条件	试验温度	允许误差	试验结果
加载标称电压 10min 后,取出时钟电池且在	-40°C		+3
断电,静置2天	+70°C	5s	-1

4. 试验结论: 符合

61. 脉冲电压试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 4. 7. 1 条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二. 5. 7. 2 条

3. 试验结果:

样品编号	R-2344-05	
试验项目	试验结果	
线路对地 6kV	符合要求	

62. 交流电压试验

- 1. 技术条件: 单相智能电能表(2020版)通用技术规范 二. 4. 7. 2 条
- 2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 7. 3 条

3. 试验结果:

样品编号	R-2344-05	
试验项目	试验要求	试验结果
20 J 1 1 1 1	试验中不应出现火花放电、闪络或击穿	符合要求
线路对地 3kV	试验后, 仪表应无损坏	符合要求
	符合基本最大允许误差极限的要求	符合要求

4. 试验结论: 符合

63.安全认证试验

 技术条件: 单相智能电能表(2020版)通用技术规范 四.4.8条, 单相智能电能表(2020版)通用技 术规范 五.7.2条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 五.8.1条

3. 试验结果:

样品编号	R-2344-10 试验分项 试验结果	
项目		
身份认证时效	身份认证时效性测试	符合要求
身份认证失效	身份认证失效性测试	符合要求
防攻击能力	防攻击能力测试	符合要求
红外认证能力	红外认证功能测试	符合要求

4. 试验结论: 符合

64.密钥更新试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 五. 7. 11 条

- 2. 试验方法: 单相智能电能表(2020版)通用技术规范 五. 8.4条
- 3. 试验结果:

样品编号	R-2344-	-10
项目	试验分项	试验结果
密钥更新功能	正确参数的密钥下装	符合要求
密钥恢复功能	正确参数的密钥恢复	符合要求

65. 远程控制试验

技术条件: 单相智能电能表(2020版)通用技术规范 四.4.13条,4.16条,4.17条, 单相智能电能表(2020版)通用技术规范 五,7,13条

2. 试验方法: 单相智能电能表(2020版)通用技术规范 五.8.6条

3. 试验结果:

样品编号	R-234	4-10
项目	试验分项 试验结界	
保电	保电功能测试	符合要求
跳合闸	跳合闸测试	符合要求
报警	报警测试	符合要求

4. 试验结论: 符合

66.参数更新试验

- 技术条件: 单相智能电能表(2020版)通用技术规范 四.4.12条, 单相智能电能表(2020版)通用 技术规范 五.7.4条, 7.10条, 7.12条, 7.15条
- 2、试验方法: 单相智能电能表(2020版)通用技术规范 五.8.5条
- 3. 试验结果:

样品编号	R-2344-10		
项目	试验分项	试验结果	
安全模式参数测试	公钥下安全模式参数测试	符合要求	
又主铁八参奴砌山	私钥下安全模式参数测试	符合要求	
数据回抄功能	数据回抄测试	符合要求	
电能表清零功能	远程清零测试	符合要求	

67. 电能量分项累计存储试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 四. 4.1条, 4.6条, 附录 E

2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 10 条, 5. 11 条

3. 试验结果:

样品编号	R-2344-10		
项	目	试验要求	试验结果
组合有功	岜		hite A -11+ 13
组合有功	T1~T12	存储 12 个结算日电能量 符合要求 符合要求 符合要求 符合要求 符合要求 符合要求 符合要求 符合要求	符合要求
正向有功	总		Arte: A
	T1~T12		符合要求
反向有功	总		100 h mm 13
区凹有切	T1~T12		符合要求

4. 试验结论: 符合

68. 费率和时段试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 四. 4. 4条, 附录 E

2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 10 条, 5. 11 条

3. 试验结果:

样品编号	R-234	44-10
项目	试验要求	试验结果
两套时区、时段表	自动切换	符合要求
时区表	可切换	符合要求
日时段表	可切换	符合要求

69.事件记录试验

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 四. 4.7 条, 附录 E

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二. 5. 10 条, 5. 11 条

3. 试验结果:

样品编号	R-2344-10		
项目	试验要求	试验结果	
编程	最近 10 次事件记录	符合要求	
校时	最近 10 次事件记录	符合要求	
广播校时	最近100次事件记录	符合要求	
电能表清零	永久记录	符合要求	
事件清零	最近 10 次事件记录	符合要求	
掉电	最近100次事件记录	符合要求	
拉闸事件	最近 10 次事件记录	符合要求	
合闸事件	最近 10 次事件记录	符合要求	
时钟故障	最近 10 次事件记录	符合要求	
零线电流异常	最近 10 次事件记录	符合要求	
事件跟随上报	按照模式字及属性配置要求实现跟随上报	符合要求	
事件主动上报	按照模式字及属性配置要求实现主动上报	符合要求	

4. 试验结论: 符合

70.冻结功能试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 四. 4.6条, 附录 E

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二. 5. 10条, 5. 11条

3. 试验结果:

样品编号	R-2344-10		
项	目	试验要求	试验结果
瞬时	冻结	保存最后3次	符合要求
约定冻结	时区转换	保存最后2次	符合要求
三丁 在 1755日	时段转换	保存最后2次	符合要求
日初	东结	存储 62 次	符合要求
月冻结		存储 12 次	符合要求
整点冻结		存储 254 次	符合要求

71.负荷记录试验

- 1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 四. 4.6 条, 附录 E
- 2. 试验方法: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 10 条, 5. 11 条
- 3. 试验结果:

样品编号	R-2344-10	
项目	试验要求	试验结果
负荷记录数据类	正确存储	符合要求
每类负荷记录的时间间隔	可设置	符合要求
负荷记录抄读	支持不同负荷记录抄读方式	符合要求

4. 试验结论: 符合

72. 软件比对功能试验

- 技术条件: 单相智能电能表(2020版)通用技术规范 四.4.19条, 单相智能电能表(2020版)通用 技术规范 二.5.10条, 5.11条
- 2. 试验方法: 单相智能电能表(2020版)通用技术规范 五. 7.16 条

3. 试验结果:

样品编号 项目	R-2344-10 试验要求 试验结果	

73. 通信规约一致性

1. 技术条件: 单相智能电能表 (2020 版) 通用技术规范 二. 5. 10 条

2. 试验方法: Q/GDW 11778-2017 面向对象的用电信息数据交换协议

3. 试验结果:

样品编号				
项目	试验要求		试验结果	
通信架构	支持"客户机/服务器"的信息 交换,支持预连接的数据交换, 服务器构成完整。	信息交换模型	符合要求	
		数据交换过程	符合要求	
		服务器模型	符合要求	
数据链路层	采用异步式传输帧结构,数据帧 编码规则、格式及时序正确。	帧格式	符合要求	
		长度域	符合要求	
		控制域	符合要求	
		地址域	符合要求	
		链路用户数据	符合要求	
		帧校验	符合要求	
		字节格式	符合要求	
		传输规则	符合要求	
	支持通信协议规定的应用层服 务, APDU 遵循 A-XDR 编码规则。	预连接	符合要求	
		应用连接	符合要求	
应用层		读取	符合要求	
		设置	符合要求	
		操作	符合要求	
		安全传输	符合要求	
		跟随上报信息域	符合要求	
		时间标签域	符合要求	
		异常响应	符合要求	

4. 试验结论: 符合

74. 通信功能试验

1. 技术条件: 单相智能电能表(2020版)通用技术规范 四. 4.8条, 附录E

2. 试验方法: 单相智能电能表(2020版)通用技术规范 二.5.10条, 5.11条

3. 试验结果:

样品编号	R-2344-10	
项目	试验要求	试验结果
通信地址抄读设置	通信地址可抄读设置	符合要求
波特率设置	波特率可设置	符合要求

75. 时钟功能试验

- 1. 技术条件: 单相智能电能表(2020版)通用技术规范 四. 4.3条, 附录 E
- 2. 试验方法: 单相智能电能表(2020版)通用技术规范 二. 5. 10条, 5. 11条

3. 试验结果:

样品编号	R-2344-10		
项目	试验要求	试验结果	
闰年测试	闰年自动转换功能	符合要求	
日历测试	日历自动转换功能	符合要求	
广播校时测试	支持明文和密文的广播校时	符合要求	

4. 试验结论: 符合

76. 外观及标志检查

2. 试验方法: 通过目测、标尺、基准器具等检查电能表外观及标志

3. 试验结果:

样品编号	R-2344-09		
项目	试验要求	试验结果	
100 C	(高) 160 mm	159.34	
电能表尺寸	(宽) 112 mm	111.47	
	(厚) 71 mm	71.53	
表盖颜色	L=+83.54	+81.99	
电池仓颜色 ——	a=-0.63	+0.06	
	b=+3.23	+3.76	
表座颜色	L=+73.14	+68.35	
端子座颜色 ——	a=-0.65	+0.88	
	b=+0.87	+0.09	

项目	试验结果
端子位置	符合要求
显示	符合要求
按键	符合要求
指示灯	符合要求
接线图	符合要求

技术条件: 单相智能电能表 (2020 版) 通用技术规范 三. 6.1 条, 单相智能电能表 (2020 版) 通用技 术规范 二. 4.3 条

77.功能检查

- 技术条件:单相智能电能表(2020版)通用技术规范 二.4.4条,单相智能电能表(2020版)通用技 术规范 四.4条
- 试验方法:单相智能电能表(2020版)通用技术规范 二.5.11条,单相智能电能表(2020版)通用 技术规范 四.4条

3. 试验结果:

样品编号	R-2344-05	
项目	试验要求	试验结果
计量功能	可计量正向总及各费率电量	符合要求
计时功能	具有日历、计时功能	符合要求
显示功能	可显示电量、时间、报警、通信等信息,可上电全显,背 光可自动关闭	符合要求
报警功能	有错误代码或报警提示,背光持续点亮	符合要求
停电抄表	停电状态下,能够通过按键唤醒电能表,并抄读数据	符合要求
脉冲输出	具有光脉冲、电脉冲、时钟脉冲输出功能	符合要求

÷,

附录 | 电压暂降和短时中断试验布置图

图 1 电压暂降和短时中断试验布置图

附录 2 电压暂降和短时中断试验接线图

图 2 电压暂降和短时中断试验接线图

附录 3 外部工频磁场试验接线布置图

图 3 外部工频磁场试验接线布置图

附录 4 射频场感应的传导干扰试验布置图

图 4 射频场感应的传导干扰试验布置图

附录 5 射频场感应的传导干扰试验接线图

图 5 射频场感应的传导干扰试验接线图

附录 6 静电放电试验接线布置图

附录 7 射频电磁场试验接线布置图

图 7 射频电磁场试验接线布置图

附录 8 快速瞬变脉冲群试验布置图

图 8 快速瞬变脉冲群试验布置图

附录 9 快速瞬变脉冲群试验接线图 (电网电源端口)

图 9 快速瞬变脉冲群试验接线图 (电网电源端口)

附录 10 快速瞬变脉冲群试验接线图(信号端口)

图 10 快速瞬变脉冲群试验接线图(信号端口)

附录 11 浪涌试验布置图

图 11 浪涌试验布置图

附录 12 浪涌试验接线图 (电网电源端口)

图 12 浪涌试验接线图(电网电源端口)

附录 13 浪涌试验接线图(信号端口)

图 13 浪涌试验接线图(信号端口)

附录 14 传导差模电流干扰试验布置图

图 14 传导差模电流干扰试验布置图

附录 15 振铃波试验布置图

- 图 15 振铃波试验布置图
- 附录 16 振铃波试验接线图(电网电源端口)

图 16 振铃波试验接线图 (电网电源端口)

附录 17 振铃波试验接线图(信号端口)

1

图 17 振铃波试验接线图 (信号端山)

附录 18 传导差模电流干扰试验接线图

第44页 共44页